Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(2): e0105621, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353010

RESUMO

Differential transcription of functionally divergent duplicate genes is critical for bacterial cells to properly and competitively function in the environment, but the transcriptional regulation mechanisms remain in mystery. Myxococcus xanthus DK1622 possesses two duplicate groELs with divergent functions. Here, we report that MXAN_4468, an orphan gene located upstream of groEL2, encodes a response regulator (RR) and is responsible for the differential expression regulation of duplicate groELs. This RR protein realizes its negative regulatory role via a novel dual-mode functioning manner: binding to the transcription repressor HrcA to enhance its transcriptional inhibition of duplicate groELs and binding to the 3' end of the MXAN_4468 sequence to specifically decrease the transcription of the following groEL2. Phosphorylation at the conserved 61st aspartic acid is required to trigger the regulatory functions of MXAN_4468. Pull-down experiment and mutation demonstrated that two noncognate CheA proteins, respectively belonging to the Che8 and Che7 chemosensory pathways, are involved in the protein phosphorylation. A transcriptome analysis, as well as the pull-down experiment, suggested that MXAN_4468 plays a global negative regulatory role in M. xanthus. This study elucidates, for the first time, the regulatory mechanism of differential transcription of bacterial duplicate groELs and suggests a global regulatory role of a dual-functional orphan RR. IMPORTANCE Multiply copied groELs require precise regulation of transcriptions for their divergent cellular functions. Here, we reported that an orphan response regulator (RR) tunes the transcriptional discrepancy of the duplicate groELs in Myxococcus xanthus DK1622 in a dual-functional mode. This RR protein has a conserved phosphorylation site, and the phosphorylation is required for the regulatory functions. Transcriptomic analysis, as well as a pull-down experiment, suggests that the RR plays a global regulatory role in M. xanthus. This study highlights that the dual-functional orphan RR might be involved in conducting the transcriptional symphony to stabilize the complex biological functions in cells.


Assuntos
Myxococcus xanthus , Myxococcus , Myxococcus/metabolismo , Proteínas de Bactérias/genética , Myxococcus xanthus/genética , Regulação da Expressão Gênica , Fosforilação
2.
J Microbiol Biotechnol ; 31(7): 912-920, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34024894

RESUMO

SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.


Assuntos
Proteínas de Bactérias/metabolismo , Myxococcus xanthus/efeitos da radiação , Resposta SOS em Genética/efeitos da radiação , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genes Bacterianos/genética , Genes Bacterianos/efeitos da radiação , Mutação , Myxococcus xanthus/genética , Myxococcus xanthus/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Serina Endopeptidases/genética , Transcriptoma/efeitos da radiação , Raios Ultravioleta
3.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608292

RESUMO

Bacterial proline-alanine-alanine-arginine (PAAR) proteins are located at the top of the type VI secretion system (T6SS) nanomachine and carry and deliver effectors into neighboring cells. Many PAAR proteins are fused with a variable C-terminal extended domain (CTD). Here, we report that two paar-ctd genes (MXAN_RS08765 and MXAN_RS36995) located in two homologous operons are involved in different ecological functions of Myxococcus xanthusMXAN_RS08765 inhibited the growth of plant-pathogenic fungi, while MXAN_RS36995 was associated with the colony-merger incompatibility of M. xanthus cells. These two PAAR-CTD proteins were both toxic to Escherichia coli cells, while MXAN_RS08765, but not MXAN_RS36995, was also toxic to Saccharomyces cerevisiae cells. Their downstream adjacent genes, i.e., MXAN_RS08760 and MXAN_RS24590, protected against the toxicities. The MXAN_RS36995 protein was demonstrated to have nuclease activity, and the activity was inhibited by the presence of MXAN_RS24590. Our results highlight that the PAAR proteins diversify the CTDs to play divergent roles in M. xanthusIMPORTANCE The type VI secretion system (T6SS) is a bacterial cell contact-dependent weapon capable of delivering protein effectors into neighboring cells. The PAAR protein is located at the top of the nanomachine and carries an effector for delivery. Many PAAR proteins are extended with a diverse C-terminal sequence with an unknown structure and function. Here, we report two paar-ctd genes located in two homologous operons involved in different ecological functions of Myxococcus xanthus; one has antifungal activity, and the other is associated with the kin discrimination phenotype. The PAAR-CTD proteins and the proteins encoded by their downstream genes form two toxin-immunity protein pairs. We demonstrated that the C-terminal diversification of the PAAR-CTD proteins enriches the ecological functions of bacterial cells.


Assuntos
Proteínas de Bactérias/genética , Myxococcus xanthus/genética , Proteínas de Bactérias/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Loci Gênicos , Óperon , Fenótipo , Domínios Proteicos , Sistemas de Secreção Tipo VI
4.
Int J Syst Evol Microbiol ; 70(12): 6284-6293, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118924

RESUMO

A Gram-stain-negative, strictly aerobic, non-motile, orange-coloured bacterium, designated YR1-1T, was isolated from a soil sample collected from the Yellow River Delta wetlands (PR China). Growth was observed at a salinity of 1.0-15.0 % NaCl, 4-45 °C and pH 6.0-9.0. The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that YR1-1T represented a member of the genus Psychroflexus, with the highest sequence similarity to Psychroflexus sediminis YIM-C238T (97.9 %), followed by Psychroflexus aestuariivivens (97.1 %) and Psychroflexus torquis (96.4 %). The average nucleotide identity and digital DNA-DNA hybridization values between YR1-1T and other closely related type strains of species of the genus Psychroflexus were 68.7-86.3% and 17.8-30.9 %. The genome of the strain was 2 899 374 bp in length with 39.8 % DNA G+C content. The predominant fatty acids (>10 %) were iso-C15 : 0 and anteiso-C15 : 0. The major respiratory quinone was menaquinone-6 (MK-6) and the major polar lipids were phosphatidylethanolamine, phospholipid, diphosphatidylglycerol, two unidentified aminolipids and four unidentified lipids. The combined genotypic and phenotypic data indicate that YR1-1T represents a novel species within the genus Psychroflexus, for which the name Psychroflexus aurantiacus sp. nov., is proposed. The type strain is YR1-1T (=KCTC 72794T=CGMCC 1.17458T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Microbiologia do Solo , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 70(9): 4993-5000, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776869

RESUMO

Strain SDU3-2T was isolated from a soil sample collected in Shandong Province, PR China. Cells of SDU3-2T were spherical, Gram-stain-positive, aerobic and non-motile. Cellular growth of the strain occurred at 25-45 °C, pH 5.5-8.5 and with 0-1.5 % (w/v) of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SDU3-2T was closest to the type strain Deinococcus murrayi ALT-1bT with a similarity of 95.2 %. The draft genome was 3.49 Mbp long with 69.2 mol% G+C content. Strain SDU3-2T exhibited high resistance to gamma radiation (D10 >12 kGy) and UV (D10 >900 J m-2). The strain encoded many genes for resistance to radiation and oxidative stress, which were highly conserved with other Deinococcus species, but possessed interspecific properties. The major fatty acids of SDU3-2T cells were C15 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c, and C17 : 1 ω8c, the major menaquinone was menaquinone-8, and the major polar lipids were an unidentified phosphoglycolipid, four unidentified glycolipids and an unidentified phospholipid. The average nucleotide identity and DNA-DNA hybridization results further indicated that strain SDU3-2T represents a new species in the genus Deinococcus, for which the name Deinococcus terrestris sp. nov. is proposed. The type strain is SDU3-2T (=CGMCC 1.17147T=KCTC 43098T).


Assuntos
Deinococcus/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Deinococcus/isolamento & purificação , Deinococcus/efeitos da radiação , Ácidos Graxos/química , Raios gama , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Raios Ultravioleta , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Front Microbiol ; 11: 140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117159

RESUMO

Myxococcus xanthus DK1622 has two RecA genes, recA1 (MXAN_1441) and recA2 (MXAN_1388), with unknown functional differentiation. Herein, we showed that both recA genes were induced by ultraviolet (UV) irradiation but that the induction of recA1 was more delayed than that of recA2. Deletion of recA1 did not affect the growth but significantly decreased the UV-radiation survival, homologous recombination (HR) ability, and induction of LexA-dependent SOS genes. In contrast, the deletion of recA2 markedly prolonged the lag phase of bacterial growth and increased the sensitivity to DNA damage caused by hydrogen peroxide but did not change the UV-radiation resistance or SOS gene inducibility. Protein activity analysis demonstrated that RecA1, but not RecA2, catalyzed DNA strand exchange (DSE) and LexA autocleavage in vitro. Transcriptomic analysis indicated that RecA2 has evolved mainly to regulate gene expression for cellular transportation and antioxidation. This is the first report of functional divergence of duplicated bacterial recA genes. The results highlight the evolutionary strategy of M. xanthus cells for DNA HR and genome sophistication.

7.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917409

RESUMO

Many endogenous plasmids carry no noticeable benefits for their bacterial hosts, and the persistence of these 'cryptic plasmids' and their functional impacts are mostly unclear. In this study, we investigated these uncertainties using the social bacterium Myxococcus fulvus 124B02 and its endogenous plasmid pMF1. pMF1 possesses diverse genes that originated from myxobacteria, suggesting a longstanding co-existence of the plasmid with various myxobacterial species. The curing of pMF1 from 124B02 had almost no phenotypic effects on the host. Laboratory evolution experiments showed that the 124B02 strain retained pMF1 when subcultured on dead Escherichia coli cells but lost pMF1 when subcultured on living E. coli cells or on casitone medium; these results indicated that the persistence of pMF1 in 124B02 was environment-dependent. Curing pMF1 caused the mutant to lose the ability to predate and develop fruiting bodies more quickly than the pMF1-containing strain after they were subcultured on dead E. coli cells, which indicated that the presence of pMF1 in M. fulvus 124B02 has some long-term effects on its host. The results provide some new insights into the persistence and impacts of cryptic plasmids in their natural bacterial cells.


Assuntos
Myxococcus , Escherichia coli/genética , Myxococcus/genética , Plasmídeos/genética
8.
Microb Cell Fact ; 18(1): 123, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291955

RESUMO

BACKGROUND: Myxococcus xanthus DK1622 is a model system for studying multicellular development, predation, cellular differentiation, and evolution. Furthermore, it is a rich source of novel secondary metabolites and is widely used as heterologous expression host of exogenous biosynthetic gene clusters. For decades, genetic modification of M. xanthus DK1622 has mainly relied on kanamycin and tetracycline selection systems. RESULTS: Here, we introduce an alternative selection system based on chloramphenicol (Cm) to broaden the spectrum of available molecular tools. A chloramphenicol-resistant growth phase and a chloramphenicol-susceptible growth phase before and after chloramphenicol-induction were prepared, and later sequenced to identify specific genes related to chloramphenicol-repercussion and drug-resistance. A total of 481 differentially expressed genes were revealed in chloramphenicol-resistant Cm5_36h and 1920 differentially expressed genes in chloramphenicol-dormant Cm_8h. Moreover, the gene expression profile in the chloramphenicol-dormant strain Cm_8h was quite different from that of Cm5_36 which had completely adapted to Cm, and 1513 differentially expression genes were identified between these two phenotypes. Besides upregulated acetyltransferases, several transporter encoding genes, including ABC transporters, major facilitator superfamily transporters (MFS), resistance-nodulation-cell division (RND) super family transporters and multidrug and toxic compound extrusion family transporters (MATE) were found to be involved in Cm resistance. After the knockout of the most highly upregulated MXAN_2566 MFS family gene, mutant strain DK-2566 was proved to be sensitive to Cm by measuring the growth curve in the Cm-added condition. A plasmid with a Cm resistance marker was constructed and integrated into chromosomes via homologous recombination and Cm screening. The integration efficiency was about 20% at different concentrations of Cm. CONCLUSIONS: This study provides a new antibiotic-based selection system, and will help to understand antibiotic resistance mechanisms in M. xanthus DK1622.


Assuntos
Resistência ao Cloranfenicol/genética , Deleção de Genes , Perfilação da Expressão Gênica , Recombinação Homóloga , Myxococcus xanthus/genética , Antibacterianos/farmacologia , Edição de Genes , Família Multigênica , Myxococcus xanthus/efeitos dos fármacos , Transcriptoma
9.
Microb Biotechnol ; 12(4): 763-774, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069998

RESUMO

Glycosylation of natural products can influence their pharmacological properties, and efficient glycosyltransferases (GTs) are critical for this purpose. The polyketide epothilones are potent anti-tumour compounds, and YjiC is the only reported GT for the glycosylation of epothilone. In this study, we phylogenetically analysed 8261 GTs deposited in CAZy database and revealed that YjiC locates in a subbranch of the Macrolide I group, forming the YjiC-subbranch with 160 GT sequences. We demonstrated that the YjiC-subbranch GTs are normally efficient in epothilone glycosylation, but some showed low glycosylation activities. Sequence alignment of YjiC-subbranch showed that the 66th and 77th amino acid residues, which were close to the catalytic cavity in molecular docking model, were conserved in five high-active GTs (Q66 and P77) but changed in two low-efficient GTs. Site-directed residues swapping at the two positions in the two low-active GTs (BssGT and BamGT) and the high-active GT BsGT-1 demonstrated that the two amino acid residues played an important role in the catalytic efficiency of epothilone glycosylation. This study highlights that the potent GTs for appointed compounds are phylogenetically grouped with conserved residues for the catalytic efficiency.


Assuntos
Epotilonas/metabolismo , Glicosiltransferases/metabolismo , Moduladores de Tubulina/metabolismo , Biotransformação , Domínio Catalítico , Sequência Conservada , Glicosilação , Glicosiltransferases/classificação , Glicosiltransferases/genética , Cinética , Simulação de Acoplamento Molecular , Filogenia , Alinhamento de Sequência
10.
Biochim Biophys Acta Gene Regul Mech ; 1861(10): 928-937, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30496038

RESUMO

Chaperonin groEL genes are duplicated in approximately 20% of bacteria, and the duplicates are differentially transcribed due to their divergent functions. The coordinated regulation of this differential transcription is as yet undetermined. In this study, we reported that the controlling inverted repeat of chaperone expression (CIRCE) element (the HrcA-binding site located upstream of the promoter) evolved for the transcriptional regulation of duplicate groELs. CIRCE composition and locations were found to be phylogenetically conserved in bacterial taxa. Myxococcus xanthus DK1622 has two CIRCE elements (CIRCE1groESL1 and CIRCE2groESL1) in the promoter region of groESL1 and one CIRCE element (CIRCEgroEL2) before groEL2. We also found that negative HrcA and positive ?32 regulators coordinated the transcription of duplicate groELs, and that the double deletion in DK1622 eliminated transcriptional differences and reduced the heat-shock responses of groELs. In vitro binding assays showed that HrcA protein binding was biased towards CIRCE1groESL1, followed by CIRCEgroEL2, but that HrcA proteins failed to bind with CIRCE2groESL1. Mutation experiments revealed that single-nucleotide mutations in the inverted repeat regions changed the HrcA-binding abilities of CIRCEs. We constructed an in vivo transcription-regulation system in Escherichia coli to pair each of the regulators with a groEL promoter. The results indicated that the transcriptional regulation performed by HrcA and ?32 was biased towards the groEL2 and groEL1 promoters, respectively. Based on promoter-sequence characteristics, we proposed a model of the coordinated regulation of the transcription of duplicate groELs in M. xanthus DK1622.


Assuntos
Proteínas de Bactérias/genética , Chaperonina 60/genética , Regulação Bacteriana da Expressão Gênica , Genes Duplicados , Regiões Promotoras Genéticas , Proteínas de Bactérias/biossíntese , Chaperonina 60/biossíntese , Proteínas de Choque Térmico/metabolismo , Myxococcus xanthus/genética , Filogenia , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Transcrição Gênica
11.
Biomolecules ; 8(4)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404219

RESUMO

Myxococcus xanthus DK1622 is a rich source of novel secondary metabolites, and it is often used as an expression host of exogenous biosynthetic gene clusters. However, the frequency of obtaining large genome-deletion variants by using traditional strategies is low, and progenies generated by homologous recombination contain irregular deletions. The present study aims to develop an efficient genome-engineering system for this bacterium based on the Cre/loxP system. We first verified the functionality of the native cre system that was integrated into the chromosome with an inducible promoter PcuoA. Then we assayed the deletion frequency of 8-bp-spacer-sequence mutants in loxP by Cre recombinase which was expressed by suicide vector pBJ113 or self-replicative vector pZJY41. It was found that higher guanine content in a spacer sequence had higher deletion frequency, and the self-replicative vector was more suitable for the Cre/loxP system, probably due to the leaky expression of inducible promoter PcuoA. We also inspected the effects of different antibiotics and the native or synthetic cre gene. Polymerase chain reaction (PCR) and sequencing of new genome joints confirmed that the Cre/loxP system was able to delete a 466 kb fragment in M. xanthus. This Cre/loxP-mediated recombination could serve as an alternative genetic manipulation method.


Assuntos
Edição de Genes , Genoma Bacteriano , Integrases/metabolismo , Myxococcus xanthus/genética , Recombinação Genética/genética , Antibacterianos/farmacologia , Sequência de Bases , Cromossomos Bacterianos/genética , Deleção de Genes , Família Multigênica , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Recombinases/metabolismo , Sideróforos/metabolismo
12.
Org Biomol Chem ; 16(21): 3952-3960, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29749412

RESUMO

Ferroptosis is a non-apoptotic, iron dependent form of regulated cell death that is characterized by the accumulation of lipid hydroperoxides. It has drawn considerable attention owing to its putative involvement in diverse neurodegenerative diseases. Ferrostatins are the first identified inhibitors of ferroptosis and they inhibit ferroptosis by efficiently scavenging free radicals in lipid bilayers. However, their further medicinal application has been limited due to the deficient knowledge of the lipid peroxyl radical-trapping mechanism. In this study, experimental and theoretical methods were performed to illustrate the possible lipid hydroperoxide inhibition mechanism of ferrostatins. The results show that an ortho-amine (-NH) moiety from ferrostatins can simultaneously interact with lipid radicals, and then form a planar seven-membered ring in the transition state, and finally present greater reactivity. NBO analysis shows that the formed planar seven-membered ring forces ortho-amines into better alignment with the aromatic π-system. It significantly increases the magnitudes of amine conjugation and improves spin delocalization in the transition state. Additionally, a classical H-bond type interaction was discovered between a radical and an o-NH group as another transition state stabilizing effect. This type of radical-trapping mechanism is novel and has not been found in diphenylamine or traditional polyphenol antioxidants. It can be said that o-phenylenediamine is a privileged pharmacophore for the design and development of ferroptosis inhibitors.


Assuntos
Morte Celular/efeitos dos fármacos , Cicloexilaminas/farmacologia , Desenho de Fármacos , Fenilenodiaminas/farmacologia , Antioxidantes/farmacologia , Sequestradores de Radicais Livres , Humanos , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/farmacologia , Relação Estrutura-Atividade
13.
Microb Cell Fact ; 17(1): 15, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378572

RESUMO

BACKGROUND: The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS: In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas9-mediated activation technique in Myxococcus xanthus and analyzed some key factors involving in the CRISPR/dCas9 activation. We firstly optimized the cas9 codon to fit the M. xanthus cells, mutated the gene to inactivate the nuclease activity, and constructed the dCas9-activator system in an epothilone producer. We compared the improvement efficiency of different sgRNAs on the production of epothilones and the expression of the biosynthetic genes. We also compared the improvement effects of different activator proteins, the ω and α subunits of RNA polymerase, and the sigma factors σ54 and CarQ. By using a copper-inducible promoter, we determined that higher expressions of dCas9-activator improved the activation effects. CONCLUSIONS: Our results showed that the CRISPR/dCas-mediated transcription activation is a simple and broadly applicable technique to improve the transcriptional efficiency for the production of secondary metabolites in microorganisms. This is the first time to construct the CRISPR/dCas9 activation system in myxobacteria and the first time to assay the CRISPR/dCas9 activations for the biosynthesis of microbial secondary metabolites.


Assuntos
Sistemas CRISPR-Cas/genética , Epotilonas/biossíntese , Família Multigênica , Myxococcus xanthus/genética , Proteínas Recombinantes/genética , Transcrição Gênica , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Epotilonas/genética , Myxococcus xanthus/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , Metabolismo Secundário , Ativação Transcricional
14.
Microb Cell Fact ; 16(1): 142, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814300

RESUMO

BACKGROUND: The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. RESULTS: In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. CONCLUSIONS: By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.


Assuntos
Sistemas CRISPR-Cas/genética , Genes Bacterianos , Myxococcus xanthus/genética , Sequência de Bases , Família Multigênica , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA de Transferência/genética , Deleção de Sequência
15.
Wei Sheng Wu Xue Bao ; 46(2): 238-42, 2006 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-16736584

RESUMO

Effects of mutations of Pprl (Dr0167) and RecX (Dr1310), which are relative to radioresistance, on reactive oxygen species scavenging activities in Deinococcus radiodurans were investigated using gene mutation, chemiluminescence measurement and enzyme activity analysis. Their possible regulating functions on the activities of antioxidant enzymes was evaluated. Results show that mutant that lacks PprI is remarkably sensitive to reactive oxygen species and its enzyme activities of catalase and superoxide dismutase decrease significantly. On the other hand, RecX has a "negative" effect on reactive oxygen species scavenging activities of this bacterium, i.e., mutation of recX enhances the scavenging activities on reactive oxygen species, and the enzyme activities of catalase and superoxide dismutase in mutant that lacks RecX are significantly increased. These results indicate that these two genes are relative to the regulation of antioxidant system of this bacterium. It presents some idea to the further investigation on the antioxidant mechanism of this bacterium.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Deinococcus/metabolismo , Proteínas de Bactérias/genética , Catalase/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/efeitos da radiação , Mutação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...